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Introduction. Axial rotating channels are widespread in power engineering industry ,  heat  power 

engineering, power engineering, chemical engineering, aircraft engines, space systems, etc. Predominantly they 

are cylindrical in shape. Converging and diverging axisymmetric channels as well as channels of arbitrary shape 

are often used. The angular rotational velocity, which, in the general case, can be variable with time, is made 

constant in the majority of works. It is rotation that has a substantial effect on the characteristics of flow and heat 

transfer, changing (increasing or decreasing depending on the type of flow) the values of the heat-transfer 

coefficient and coefficient of hydraulic resistance by a factor of 2 - 3  or more. Much attention has been paid recently 

to investigating the action of additional complicating factors - injection or suction, the form of the inlet velocity 

profile, the disposition of the channel, etc. Several works are concerned with relatively infrequent problems of the 

flow of a liquid that occupies partially the cross-section of the channel, flow in a tube that is closed at one end, etc. 

I. Horizontal Rotating Tube. Mathematical Description. To describe transfer processes in straight tubes of 

a constant circular cross section, a cylindrical coordinate system is used. In all the works that we know, it is fixed. 

Due to this rotational effects do not appear in the equations of motion in explicit form and act only indirectly 

through the influence of the boundary condition on a rotating wall as well as in terms of turbulence characteristics. 

In what follows cylindrical coordinates are used; the zero value of the radial coordinate r coincides with 

the tube axis, that of the axial coordinate z, with the inlet section, and the zero value of the angular coordinate ~o, 

with the vertical section of the tube. In this coordinate system, the equations of motion and energy have the following 
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In the majority of works, the s ta t ionary problem (w = const) is investigated, which signifies O/Ot = 0. The  

boundary- layer  approximation describes well flow in a rotating axial tube, which signifies a2 /0z  2 = 0 [1-11 ]. For 

an axisymmetr ic  case, O/O~o = 02/0~o 2 ~= 0 [1-8, 11 ]. Terms that contain derivatives of pulsation components  with 

respect to z and ~ are usually discarded because of their minor contribution. For the region of developed turbulent  

flow, the lef t -hand sides of Eqs. (1)-(3) and (5), except the term pu~o2/r in (1) and pCpuzOT/dz  in (5), are 

considered as equal to zero, the continuity equation (4) taking a simple form: Ur = O. 

As has been noted above centrifugal and Coriolis forces do not enter  in Eqs. (1)-(3) in explicit form. In 

[9, 10 ], the influence of buoyancy forces in a gravitational field for a laminar  regime of flow is investigated. In this 

case, in Eqs. (1) and (2) there  appear  non-zero components of mass forces Fr and F~, that have the following form: 

Fso 1 Gr  F r 1 Gr  
- - -  O s i n  ~o, 2 2 

pu  zav / r  w 2 Re 2 pu  z av/r  w 2 Re 2 
- - O c o s  ~ ,  

where the tempera ture  difference in the Grashof  number  is determined as AT -- T w - Tma x. 

Boundary  conditions on the wall are the equalities Uz = Ur = 0 and u~ = ua, = a~r as well as the prescribed 

heat flux or temperature  (usually constant ones).  On the tube axis, OT/Or -- 0, Ur = u~, = 0, and  OUz/Or = 0. The  

velocity, temperature ,  and pressure distributions are prescribed at the inlet to the tube. 

To close the system (1)-(5) ,  the equations of the transfer  of the pulsations U'z 2, Ur 2, U'so 2, UzU'r, U'zU'so , u'ru'so, 
r r 

u z T ,  U'rT', and u'~oT' as well as e, the rate of dissipation for the turbulent  kinetic energy ki, are used in [5, 6, 12 ]. 

In [5, 13, 14 ], a simpler k - e  model is employed,  while in [2] differential equations for k and ~ 'z  are  solved that 

are used then to calculate u'zu' r and UrT' (the remaining pulsation components  are not allowed for) .  

In [3, 7, 8 1, to calculate the pulsation U'zU' r (the remaining ones are considered negligibly small),  the mixing 
length model is used 
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The quantity I is calculated in a form proposed by P. Bradshaw [15]: 

l = / 0 ( 1  - / 3 R i )  m, 

(6) 

(7) 

where/o refers to the fixed tube while the Richardson number is calculated by the formula for two-dimensional 

flows 

Ri = 2 u~, O (u~or) 0 %  O 

2 0r L k ' )  + r - -  . (S) r Or 

In [7 ], m "- I, fl ffi 0.4 or 0.5 are used; in [8, 10, 111 - m = 2, while fl = 1/6 - for the region of steady-state 

turbulent flow. In [3 ], p = 2 and 2.5 is realized on the initial segment of the tube. In [7 ], for a laminar flow that 

is turbulized by the rotation of the tube: l / l o  = 0.012Re~ s. 
An approximate integral method for calculating friction and heat transfer is proposed in [16]. V. V. 

Novozhilov's model of turbulence is employed in [4 ] for this type of flow; the calculation errors are rather high. 
For the characteristic of the influence of rotation on hydrodynamics and heat transfer, the Reynolds 

rotational number Rea, and the simplex 

ua~ w r  w 
~ 

Uz a v  Uz a v  

are used. 
For the region of steady-state turbulent flow, the authors of [11 ] obtained the parameter 

Z = N  m 
uo 

2 R e r -  u T - N  , (9) 

which permitted determination of a universal dependence for the axial component of the velocity. 
Stability and Flow Regimes. The results of theoretical and experimental works [ 17-22 ] show that laminar 

flow is unstable to small nonviscous disturbances induced by the rotation of the tube about its axis. This instability 

manifests itself even for Re = 165.75 and Re~ = 53.92. Conversely, turbulent flow stabilizes as a whole in tube 

rotation, which is due to the conservative action of mass forces [1-8, 10-12, 14, 16, 21, 23-34 ]. 
As of now, the boundaries of flow regimes have been found only approximately. The principal criterion for 

their determination is the change in the overall coefficient of the tube's hydraulic resistance [1, 29 ] 

Ap 2d 
2 h y d r  --'-- 2 - -  

PUza v L 

When Re < 2.103 an increase in N leads to an increase in ~.hydr; as Re increases '~hydr decreases, as it does 

in laminar flow in fixed tubes. This flow regime is called by V. K. Shchukin "disturbed laminar" [1 ]. For a transient 

flow regime (in the range Re -- 2" 103-6 �9 103), data for the dependence 2hydr(Re, Re,o) are contradictory. A further 

increase in the number Re is characterized by curves for 2hydr that have a minimum (extremum), the lines passing 

one below another as N increases [1, 29 ]. The point of the minimum depends on the numbers Re and Reo,. Shchukin 

calls the flow in the Re number range from 6-103 to the minimum "laminarized" [1 ]. In this regime, the mass 

forces laminarize the flow but do not eliminate the remanent turbulence, due to which 2hydr in this regime is higher 

than in laminar flow. 
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Fig. 1. Regions of flow regimes in axial rotating tube: 1) formula (10), 2) 
(11), 3) N - 0 . 1 2 5 ,  4) 0.475, 5) 0.35, 6) 0.8, 7) R e c r -  6"10 a, 8) boundary 
of disturbed laminar flow. 

Fig. 2. Velocity and temperature profiles for laminar flow in axial rotating 
tube (Re = 1000): I-4) experiment for uz/u=max and u~/u=, [7],  5-8) 
calculation for uz /u  z max [7 ], 9-13) calculation of O [9 ], 14) u~/u,o = r/rw, 
15) u~,/u,o = (r/rw) 2, 9) Rea, = 0; 1, 5, 10) 500; 2, 6, 11) 1000; 3, 7, 12) 
1500; 4, 8, 13) 2000. 

The increase in ,~hydr as Re increases further is due to changing over to turbulent flow that is subject to a 
conservative influence of rotation. V. K. Shchukin calls this regime "partially suppressed turbulent" [ 1 ]. 

For high Re numbers, the influence of rotation on the flow becomes secondary; the turbulent flow regime 

sets in. From the data of [ 1 ], here  ,~.hydr = 2hydr.0 while from the data of [29 ] '~hydr is somewhat larger, which is 
an error: the authors of [29 ] did not eliminate f rom ,~-hydr the hydraulic resistance of the pre- and post-embedded 
fixed segments in which the sensors were located fRhyar.0 is the coefficient of hydraulic resistance for the fixed 
tube). 

The dependence for the Reynolds number of the changeover to the turbulent flow Recr, determined from 
the point of the minimum (extremum) of ~.hydr/,~.hydr.0 as a function N appears as [1 ] 

0.78 
Recr = 7.16 Keoj + 2300. (I0) 

From the data of [29 ] 

R 0.9 Recr= 1.9 e~o +2300, 104<Re~o<5-104 . (ll) 

The boundaries of the possible flow regimes are shown in Fig. 1 [1 ]. Curve 1 is constructed by (10). This 

curve is quite similar to curve 2 (11), which is obtained, like curves 5 and 6, in a much narrower range of Re and 
Re~ numbers. Curves 3 and 4 determine the boundaries of the turbulent regime E and two partially suppressed 
regimes Dt and D2. Curves 5 and 6 determine the boundaries of the same regimes from the data of [29 ]. Curve 7 
corresponds to the boundary of the transient regime B and the laminarized regime C. Curve 8, which is constructed 
from the data of [23, 35 ], corresponds to the boundary of laminarized flow. The disturbed laminar regime of flow 
is denoted by the letter A. 

Laminar Flow.The axial velocity profiles in disturbed laminar flow that are obtained in [7 ] approach the 
turbulent type as Re and Reoj increase (Fig. 2). The tangential velocity distribution is close to the profile in a forced 
vortex (law of rigid bodies) [7, 9 ] 
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Fig. 3. Hydraulic resistance of axial rotating tube in disturbed laminar flow: 

1) Eq. (12) for R e -  500 (lower curve) and I000 (upper curve); 2) experiment 

[7] (the upper bound is Re = 1000, the lower is - 600); 3) Eq. (14); 4) 

experiment [23 ] (the upper bound is w r w  - 5.32 m/sec ,  the lower bound is 

ear w - 1.33 m/sec;  5) Eq. (15). 

u ~ / u a j  = r / r  w . 

The number  Re has a slight effect on the distribution of the axial velocity [9 ]. In going from a fixed section 

to a rotating one, circular flow involves gradually new layers closer to the tube axis. For the rotation to establish 

completely according to the law of rigid bodies, about 255d for Re = 2300 are required, from the data  of a pure 

theoretical calculation [361. 

The data of [1, 7, 9, 23, 32, 37] demonstrate the increase in the hydraulic resistance of the dis turbed 

laminar flow. 

The experimental  data of [7] are obtained in a channel with d -- 5 - 2 0  ram, L / d  = 200-388 ,  Re = 

600-1000,  Reoj = 600-2000,  and N = 0 .6 -3 .3  (the working fluid is water). These data  agree well with the empirical 

expression [32 ]: 

- 3 1  ~ 0 .16 ( 1 2 )  
~'hydr = ~ "  Ke~o , 

where ~hydr = )~hydr/~thydr.0, and '~hydr.0 is determined by the Poiseuille formula 

'~hydr.0 = 6 4 / R e .  (13) 

The experiments [23 ] are conducted in a channel with d = 0.0254 m, L / d  = 68, Re = 300-2300 ,  w r w  = 

0 -5 .2 3  m/sec,  N = 2 .5 -17 .5  (the working fluid is transformer oil) and are described by the equation 

~'laydr = 0-65N0"54- (14) 

In [16 ], on the basis of the integral calculation method the following formula is obtained: 

~'hydr---- 1 + 0 . 2 5 N .  (15) 

As can be seen from Fig. 3 dependence (15) agrees satisfactorily with the data [7] for N < 2.5. In the 

region N < 3.3, the experimental results [23 ] are 2 0 - 3 5 %  lower than the data of [7 ]. For N -- 3 .3-17 .5 ,  there 

are only experimental data [23 ]. Apparently, for N = 3 .3-4 .3 ,  ~[hydr can be determined to a relative degree of 
reliability as the arithmetical mean by formulas (12) and (14), while for N > 4.3, Eq. (14) should be employed. 

As the number Re,,, increases the temperature profiles also approach the turbulent type [9 ] (Fig. 3). 

5 1 5  



A viscosity-gravitational regime of flow can develop in the presence of nonisothermicity. Rotation leads to 

transforming the two-vortex structure that is typical of this case to a one-vortex structure in the cross-section (a 

vortex that rotates in one direction with the tube wall increasing) for  N =. Nl [9, 38 ]. However the center  of the 

vortex remains above the tube axis. Motion becomes axisymmetric only once a certain value N ,= N2 is at tained [9, 

38 ]. Analysis of the data of numerical calculations [9 ] enabled us to obtain the dependences  for est imating Nl and 

N2 as a first approximation: 

N l = 1 . 6 G r / R e  2,  N 2 = 2 0 G r / R e 2  

These  expressions are obtained for Re _< 1000, N < 1, and G r / R e  2 _< 0.2. 

For flow when free convection has no effect on heat transfer,  we approximated the numerical  data of [9 ] 

on the segment of stabilized heat t ransfer  by the equation 

N u / N u  0 = (1 + 6.05- 10 -4  Re 1"272 N) 0"33 , (16) 

where Re - 2 0 0 - 2 0 0 0 ;  N = 0 . 2 5 - 2 0 ;  Re.a, - 5 0 0 - 4 0 0 0 ,  and  Nuo - 4.36. For  sufficiently large values of Re and  N, 

Eq. (16) appears as 

N u / N u  o = 0.0867 Re~ ~ . (17) 

The  authors  of [24 ] approximated their  own experimental  data for the heat - t ransfer  coefficient averaged 

over the channel  length in the viscosity-gravitational regime by the following expression: 

N u / N u  o = 1.75N 0"33 ( r  ~  , (18) 

for Re -- 2. 102-2  �9 10a; Re,,, -- ( 1 .87 -7 .5 ) .  104; r -- 0 - 1 0 4 . 7  1/sec; N = 7 - 5 0 0 ;  Gr  = 5" 1 0 s - 5  �9 107; d = 0.0317 m; 

L / d  ~ 20.2 (the working fluid is not indicated). The  number  Nuo was determined by M. A. Mikheev's  formula 

[191: 

~'~U0f = ~ 0 . 3 3 ~  0 33 0.15 ice r r r  r ' (Gr  Prf) ~ (Prf /Prw) ~  e I . (19) 

Here  the temperature  difference in the Grashof  number  appears as AT = I Tw - Tinll ; the governing tempera ture  

is T = (Tin I + Tw)/2;  the characteristic dimension is d. The  correction et allows for a change in the number  Nu0f 

along the tube length. 

When deriving formula (19) it was assumed that the influence of the physical properties of the fluid, the 

temperature  factor, and the length on heat t ransfer  is the same as for a fixed tube. 

In [161, using the integral calculation method the following relation 

is obtained,  where 

N u / N u  0 = (1 + 0.25N) 0"33 , 

Nu 0 = 1 . 3 9 ( d / L ) l ' 3 R e l " 3 p r  1/3. 

(20) 

Expression (20) predicts very slight increases in the Nusselt number,  which does not agree with the data of the 

experiment  [24 ] and direct numerical modeling [9 l. 

Formulas (16) and (17) agree satisfactorily with the experiments [24 ] for large Reynolds  numbers  Re = 

1500-2000.  In the region of small Re numbers,  formula (16) predicts a relative increase in the number  Nu that is 

by an order  of magni tude smaller than that observed in the experiments [24 ]. Obviously under  these conditions 

this is the result of the dominating influence of free convection. It seems impossible to directly compare  formulas 
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Fig. 4. Profiles of velocity (experiment [30], N- 3) and temperature 

(experiment and calculation [8 ], a stabilized segment) for turbulent flow in 

axial rotating tube and Re- 104: I-6) uz/uzmax; 7-12) u,p/u,,; 13-18) O; I, 
13) N" 0 (theory); 6) N " 0 (laminar flow, the theory); 2, 7) z/d., If; 3, 
8) 36; 4, 9) 68; 5, I0) 168; II) u~,/u~ - (r/rw)2; 12) up/u~ - r/rw; 14) N- 
0.5; 15) I; 16) 2; 17) 3; 18) 5. 

Fig. 5. Change in form factor H along tube [30] (Re = 104): I) N ffi 0; 2) 0.5; 

3) I; 4) 2; 5) 3; 6) 4; 7) H = 2.5, laminar flow for N = 0. 

(16) and (18) since neither the type of the working fluid nor its properties arc indicated in [24 ]. The coincidence 

of the values of the indexes on the numbcr N in formulas O5)-(18) and (20) is noteworthy, too. 

Turbulent Flow. Using visualization thc authors of [30 ] revealed a certain sequence of the development of 

turbulent flow in a rotating tube whcn the fluid cntcrs from a prc-cmbcdded fixed segment. 

In the case of moderate rotation (Re = 104, N = I) on the initial segment with z/d = 12-28 there is a 
laminarizcd boundary layer near thc wall and a nonrotating turbulent core. In thc cross-scctions with z/d = 36-52 
and further, the turbulence of the core generates turbulence "spots" in the iaminarizcd layer. In the cross-sections 
with z/d = 94-I I0, the rotation involves axial layers of the tube, and thc turbulent "spots" observed earlier arc 
uniformly diffused along the flow radius. Ncxt the turbulence "spots" appear periodically again and no flow 

Iaminarization is observed, the axial velocity profiles differing {towards laminarization) from the usual turbulent 

cross-section. In strong rotation (Re = 104, N = 3) on the length z / d  = 12-52 flow in the rotating layer becomes 

completely laminar despite a single "spot" of turbulence. On the segment with z / d  -- 94-110, the laminar rotating 
flow involves the entire cross-section of the tube, and the frequency of appearance of turbulence "spots" is very low. 

On the segment z / d  = 170-180, the rotation destabilizes the flow again; turbulence in the flow and the "spot" 

frequency increase somewhat. 

For N = 5 on the segment with z / d  = 9 4 - 1 1 0  the flow occurs intermittently in time: with an interval of 0.6 

sec there follows laminarization,  the beginning of instabili ty,  the appearance of turbulent  "spots," a n d  

relaminarization. On this basis the authors of [40 ] relate the bursts of turbulence to vortex decomposition in the 

flow. 

The described character of the development of flow for N = 3 corresponds to the axial velocity profiles (Fig. 

4). In the initial cross-sections in the wall region, the profiles have a Iaminarized form, while in the region of the 

nonrotating turbulent core Uz is practically constant. Away from the inlet to the tube the velocity profiles already 

acquire a typical laminarized form in the entire cross-section. The axial velocity profiles in [30 ] are also constructed 

in the coordinates (r w - r ) / 6 * * ,  i.e., in a larger scale. Even the same, in practice (in the coordinates r / r w ) ,  

distributions u z away from the inlet to the tube turn out to be sensitive to local changes in the degree of turbulence, 
deviating towards turbulization or laminarization. 

The change in the profile of the rotational velocity along the tube length is shown in Fig. 4 [30 ]. Regardless 

of N the distribution of the circular velocity for steady-state flow follows the law [7-11 ] 
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u~,luoj = ( r l rw)  2 �9 (21) 

The development of the flow along the tube is clearly characterized by the form factor H, which is calculated 

by ordinary formulas for the axial velocity [30] (Fig. 5). For laminar flow in a fixed tube, H = 2.5-2.6.  The 

laminarizing effect of rotation induces a "jump" in H at the inlet to the tube, the more pronounced, the higher N 
(when N > 3 H ~ 2.5). The form factor H attains its maximum for z / d  -~ 30 and then decreases asymptotically 

to an approximately constant N-dependent value, which demonstrates enhancement of turbulence. 

The substantial attenuation of turbulence and its renewed buildup along the tube length are also 
- ,2  2 I/2 demonstrated by the distributions of the pulsation (u~, / u  z inl) [30 ]. Detailed measurements of turbulent char- 

acteristics, including those at the moment of the "bursts," are presented in [31 ]. 

The successive development of velocity profiles from a turbulent profile to laminarized ones in the region 

of steady-state (completely rotating) flow for different N and Re = idem is presented in [7, 9-11 ]. These 

distributions, obtained in experiments and calculations, are similar to the uz profiles in Fig. 4, the curves passing 
increasingly higher as N increases. 

The authors of [ 11 ] solved Ecl. (3) with allowance made for the above-described simplifications for the 

region of steady-state flow, employing the mixing length model (6)-(8), in which/o was determined by the known 
Nikuradze formula with the Van Drist damping cofactor 

~o = (0.14 - 0.08"/2 - 0.007 4) [1 - exp ( -  y+ /26) ] .  

The tangential velocity was described by expression (21). It was established that the effect of rotation on 

the axial velocity profile is characterized by the parameter z (formula (9)), the expression for the universal 
+ 

distribution u z appearing as 

+ + + (1 - f ) ,  (22) U z = U z b f +  Uzc 

+ and u+c are the velocity distributions in the wall region and in the flow's core, respectively. where Uzb 

+ =  1 [ + ] 
Uzb ~'1 In (1 + Xly +) + 7.8 (1 -- exp (-- Y + / Y l ) )  Re, Y---+ exp ( -  by +) ,. (23) 

Rer~ Yl 

Here 

+ 
Uzc = Uzmax/U_ r - AF B . (24) 

tC 1 = 0.4 ~ + 1 ; 

+ Rer 
Yl = 11 R---~ o b = 0.33 JR%0 ~ + 1  

-3.5 

A = (0.06052Z 2 + 5 .4Z  + 25.705) l / z  , 

1 : 2  

B = 1.55 + 0.338 [1 - exp ( -  0.0553Z) ] ; 

f = e x p ( - a  t ( 1 - F ) ) ;  a I = S R e r 0 / R e  r ;  

Rer 0 = u~orw/v and ur0 is calculated for a fixed tube. On the basis of the Blasius formula for the hydraulic resistance 
in turbulent flow in a fixed tube 
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Fig. 6. Distribution of mixing length for turbulent flow in axial rotating tube 
on segment of stabilized flow (Re = 2. 104). The experiment [7 ]: 1) N = 0; 2) 
0.5; 3) 1.0; calculation for/~ ffi 0.4 [71; 4) N =  0; 5) 0.5; 6) 1.0; 7) 1.5; 8) 2.0; 

9) 3.0. 

2hydr.0 = 0.316 Re -~ , (25) 

the expression for the Reynolds number Rex0 appears as 

R e ~  = (0.3164/32) t /2  Re0.875. 

The maximum-to-average velocity ratio uz max/Uz av in [7 ] increased linearly from = 1.3 to 2 (this value 
is characteristic of laminar flow) in the range 0 < N < 3.5, the number Re having no effect on this ratio. The 

relationship Uz max/Uz av derived in [8 ] shows a weaker effect of rotation. Thus, for N = 5 in [8 ], Uz max/Uz av, and 
a magnitude equal to two is attained asymptotically when N > 10. 

In [11 ], from the same premises that led to formulas (22)-(24), the following relationship is derived: 

Uzmax Re 2A 
- 2 + B 

where A and B are found above. The data of [8 ] and [ 11 ] practically coincide. Distributions of the mixing length 
7 in the steady-state flow region have the form 

I ;l l l l l =  l 0 [dy+)  tay+) + 1 Re:)  ' 

+ 
where the universal velocity u z is determined by formulas (22)-(24). 

Figure 6 shows the distributions of the function l in this region for different values of N [7 ], which 

demonstrate the conservative effect of rotation on originally turbulent flow. 
In [3, 24], it is shown that the rotation alters the spectrum of turbulent pulsation frequencies: the 

amplitudes maximum shifts to a high-frequency region. This confirms the hypothesis that the mass forces suppress 
primarily low-frequency large-scale pulsations. 

An overall reduction of the turbulence level leads to a decrease in the tangential stress r~w. In [29 ], an 
expression is obtained that approximates experimental data for N < 0.9: 

2 
2r~w/(PUzmaxN ) = 0.00317 exp [ -  0.023 (L/d) I. 

For larger values of N, greater suppression of turbulence and a stronger decrease in r~,w were observed. 

The stabilizing effect of rotation on the flow leads to a decrease in the hydraulic resistance of the rotating 

segment (Fig. 7). In relative form, ~hydr ='~hydr/2hydr.0, where 2hydr.0 is determined by the Blasius formula (25). 
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Fig. 7. Hydraulic resistance of axial rotating tube in turbulent flow: 1-7) 
experiment [29 ]; 1) L / d =  30, Re = 104; 2) 50 and 3.5- 104; 3) 50 and 5.5. 104; 
4) 70 and 2. 104; 5) 70 and 3.5-104; 6) 70 and 7.5. 104; 7) L / d  >_ 100, Eqs. 
(28) and (29); 8) L / d  >_ 100, Eqs. (26) and (27); 9) L / d  >__ 100, transition 
to laminar flow. 

For small rotational velocities ~hydr first remains equal to unity (turbulent flow) and then decreases  and 

attains a minumum. A sharp increase in ~hydr thereafter for m ffi idem and Re = Recr as N increases demonstrates  
the transition to a laminar flow regime. For small tube lengths L / d  < 70, the data [29 ] have a large spread (Fig. 
7a); however, when L / d  _> 100 this spread is small and Xhydr is almost independent  of the tube  length. 

For L / d  >__ 100 ,  it was found in [29 ] for 

N < 0 .35,  2hydr  ---- 1 ; 

0.35 ___ N _< 0 .8 ,  /[hydr = 0.579N-~ (26) 

7b): 

n 1.42 (27) 0.8 _< N _< 1.2, '~'hydr = 0 .47N-  

Based on earlier experimental data [40, 41 ] V. K. Shchukin [1 ] presented the following relations (Fig. 

N < 0.125,  2hydr = 1 ; 

- -0.086 
0.125 < N < 0.475,  2hydr = 0.89 (2N) ( 2 8 )  

- -0.535 
0.475 < N < 5 ,  "~hydr = 0 . 8 6 5  ( 2 N )  

whicht serve as the upper bound of the results [29 ]. 

In [16 ], the equation (obtained by a calculation method) 

~hydr = 200 Re -0'75 [1 + 0.25N + (0.005 Re 075 - 0.0002 R % N  - 1) ] 

(29) 

(30) 
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TABLE 1. Eigenvalues ;t2n and Constants BnHn (1) for Different Values of Re Number and Parameter A in Formula 
(32) [101 

Re A 

10,000 0.5 

N ~12 

0.0 0.969 

1.0 0.959 

5.0 0.866 

20.0 0.809 

281.4 806.8 1559 2550 

132.1 412.8 829.4 1379 

23.72 73.52 149.7 252.3 

14.03 43.34 88.68 

BIHI B2H2 B3H3 B4H4 BsH5 
(1) (1) (1) (1) (1) 

0.969 0.007 0.0041 0.0029 0.0022 

0.959 0.0113 0.0050 0.0033 0.0025 

252.3 0.864 0.0508 0.0199 0.0112 0.0074 

150 0.803 0.0771 0.0299 0.0164 0.0105 

10,000 2 0.0 3.55 

1.0 3.41 

5.0 2.44 

20.0 2.00 

286.9 816.2 1572 

136.3 419.6 837.1 

26.7 77.32 154.2 

16.51 46.55 92.42 

2566 0.887 0.0238 0.0144 0.0105 0.0079 

1389 0.853 0.0374 0.0172 0.0116 0.0088 

257.4 0.595 0.1202 0.0562 0.0342 0.0236 

154.2 0.477 0.1487 0.0746 0.0459 0.0315 

10,000 10 0.0 

1.0 

5.0 

20.0 

12.18 306.9 851.9 1624 

10.67 150.6 439.6 866.4 

4.55 32.58 86.46 166.3 

3.17 20.27 52.76 100.9 

2633 0.606 0.0590 0.0394 0.0315 0.0256 

1427 0.526 0.0829 0.0435 0.0315 0.0266 

272.2 0.207 0.1000 0.0661 0.0497 0.0397 

164.7 0.138 0.0843 0.0622 0.0493 0.0406 

50,000 0.5 0.0 

1.0 

5.0 

20.0 

0.99 1117 3285 6432 

0.986 437.8 1399 2848 

0.925 45.5 144.3 295.8 

0.809 14.09 43.52 89 

10,550 0.991 0.0017 0.0009 0.0006 0.0005 

4778 0.987 0.0033 0.0013 0.0008 0.0006 

499.8 0.924 0.0285 0.0106 0.0058 0.0038 

150.6 0.804 0.0768 0.0298 0.0163 0.0105 

50,000 2 0.0 3.854 

1.0 3.794 

5.0 3.004 

20.0 2.004 

1123 3293 6445 10,563 0.964 0.0064 0.0034 0.0025 0.002 

442 1404 2855 4787 0.949 0.0125 0.005 0.0031 0.0023 

49 148.5 300.6 505.2 0.745 0.0855 0.0349 0.0200 0.0134 

16.58 46.73 92.77 154.8 0.478 0.1484 0.0745 0.0458 0.0315 

50,000 10 0.0 16.81 1148 3334 

1,0 15.71 461.4 1429 

5.0 7.282 59.17 162.5 

20.0 3.179 20.35 52.98 

6503 10,641 0.84 0.0249 0.0136 0.0101 0.0084 

2887 4826 0.784 0.0460 0.0193 0.0121 0.0091 

317.9 525.3 0.343 0.1256 0.0704 0.047t 0.0347 

101.3 165.3 0.138 0.0843 0.0621 0.0493 0.0406 

is p r e s e n t e d .  It is app l i cab le  for posi t ive  values  of the e x p r e s s i o n  in the p a r e n t h e s e s ,  i .e . ,  when  
N __. [(25Re ~ - 5000) /Re ] 1/2. As Re increases from 5000 to 50,000 the limiting value of N decreases from 1.4 

to 1.25. Depending on the number Re the values of ~hydr that are calculated by formula (30) can be 3 0 - 4 0 %  lower 
than the experimental data [29, 40, 41 ]. 

521 



In the region of laminarized flow, the hydraulic resistance is higher  than in laminar flow in the f ixed tube, 

and it decreases as N increases (when Re < Reef). This demonstrates  the preservation in the flow of the remnants  

of turbulence,  which is t ransferred mainly by a longitudinal pulsation, which is maximal and not direct ly affected 

by radial rotation (1, 25 ]. For this case in [ 1 ] the expression 

X h y d r  = ~hydr/Jl'hydr.0 = 3 - 2 N - 0 " 4 4 ,  

is obtained, which holds for Reo~ = 2.8. 102-2.2 �9 103 and Re < Recr. Here ,~hydr.0 is calculated by relation (13). 
Experimental data [8] for hydrodynamically and thermally steady flow demonstrate profiles of the 

temperature  O approaching the laminar  type (Fig. 4), which is in agreement  with the overall picture of turbulence 
suppression in the tube. 

The  decrease in the pulsations u~T' and u'rT' as a result of the conservative effect of rotation is demonst ra ted  
by the computational data of [6 ]. 

Experimental  and  computational data on heat t ransfer  are given in [8, 10, 27, 35 ]. Th ey  show that  rotation 

reduces substantial ly the Nusselt  number .  Thus ,  for R e  = 5 0 0 0  a n d  N - 5 ,  the ratio N u / N u o  ~ 0 .37  [8 ]. 

The  only known empirical similarity equation was obtained in [27 ] as a result  of processing of experimental  

data for the initial segment of a hea ted  tube with d = 97.6 ram, L = 3000 mm, Re = ( 0 . 3 - 3 ) .  l0  s, N = 0 - 0 . 8 ,  to = 

0 - 1 2 2 . 5 2  set: - l  (the working medium is air). To  calculate the local Nu and average Nu Nusselt  numbers ,  the 

authors  of [27 ] recommended the following dependences:  

N u / N u  o =  1 - t h  

N u / N u  0 =  1 - t h  

1 + 0.001335 Re~ 
Re 7/8 

- exp 

Reo 
1 + 0.000175 - -  exp 

Re 0-685 

( -- 0.23 Re7/8-----j j , 

(-00  (31) 

where 

Nu = 0.022 Re 0"8 Pr  0"43 1.38 ( z / d ) - 0 " 1 2  ; 

Nu = 0.021 Re ~  Pr  ~ e I . 

Here the numbers  Rez and Prz are found for the local cross-sections of the channel;  e I is a correction for the length 

of the initial segment. 

The  experiments  of [8 ] were conducted in a tube with d = 50 mm, L / d  = 120, Re = (0 .5 -5 ) .  104, Reo = 

0 - 2 5 , 0 0 0 ,  to = 0 - 3 1 4 . 2  sec - l  , N = 0 - 5  (the working medium is air). For Re - 5000 and N = 3 - 5 ,  the experimental  

data [8 ] for N u / N u  0 are 2 0 - 2 5 ~  higher  than those calculated by formula (31). For smaller values of N, a bet ter  

agreement  is observed. 

In [8, 10 ], the authors obtained analytical solutions of the problem using approximation (21) that  describe 

sufficiently well the experimental  data of [8 ]. The  expression of [10 ] for the local Nusselt number  appears  as 

I Nu = 2A BnH n (1) exp ( -  ~l n z )  x 
n=l  

x 1 - 2A 2 
n=l  A n n=l  

where ~ = 4z / (dRePr ) ;  A = krw/Yt; k is the heat- t ransfer  coefficient, which is determined by the relation 

(32) 
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k a0r  0 

in which a o and  ro are  the coefficient of heat  t ransfer  on the exterior  wall of the tube and its outside radius,  Aw is 

the heat - t ransfer  coefficient for the tube material.  The  magnitude (1) of the argument  of the function BnHn 
corresponds to the value of the dimensionless radius r / r  w. The  coefficients BnH n (1) and 22 for the first five terms 

of the series are  given in [10 ] as a table (here  it is abridged).  Expression (32) indicates a substantial  increase in 

the length of the initial thermal segment as the rotation parameterB increases as well as independence of the 

obtained results of the form of the "thermal" boundary  conditions on the wall. 

In [16 ], a dependence  is proposed that  is obtained on the basis of an integral calculation method: 

NU = 1.39 (Re Pr  d/L)  1/3 [1 + 0.25N + [0.005 Re ~ - 0.0002 Ree, N - 1) I 1/3 . 

It can be used for positive values of the expression in the parentheses (see comments on formula (30)).  T h e  

resultant relative values of the Nusselt  number  N u / N u 0  are unders t imated by 2 0 - 4 0 %  as compared to the data  

of [8, 271 and Eqs. (31) and  (32). 

2. Influence of  Various Factors .  In [42-45 ], the authors  investigated the influence on the turbulent  flow 

in a tube of the initial swirl, which is different  from the swirl on the main segment.  In [45 ], the development  of a 

recirculation zone and  re turn flow near  the axis was observed. 

A special case is the localized segment of the reconstruction of an undeveloped (rectangular) velocity profile 

at the inlet to the tube [3 ]. Here,  a "burst" of turbulence is observed which is due to a strong shear  caused by the 

rotation of the wall [3 ]. 

T h e  ax ia l  ve loc i ty  prof i les  on  this  s egmen t  ( z /d  ffi 2 . 7 - 2 8 . 5 )  a re  the  s am e  (in the  c o o r d i n a t e s  

(r w - r) /6z*) and lie between the s tandard  distribution for laminar and turbulent  flows. 
** 03 For  the circular velocity profile, the expression 1 - u~o/uoj = [(rw - r)/(10<$z~ ] " is obta ined in [3 [. The  

distributions of the momentum thicknesses determined by the equations 

rwrW U / , w u ~ z * = f  - -  1 -  - - d r  = f u~ dr 
J Uz inl rw , z,p ut ~ ' - r w -  ~ Uz inl 

become flat as N increases,  which reflects the retardat ion of the development of the boundary  layer  due  to rotat ion 

[3]. 

In the cross-section z /d  = 2.7, the circular component of the pulsations ( @ 2 ) ~ / u  z inl increases by a factor 
, , 2 of 2 - 3  for practically constant components  ('U'z2)t"2/uz int and  ( U r 2 ) ~ / ~  z tnl- Th e  tangential  stresses uzu~,/u z inl and 

, , 2 , , 2 urug/Uz inl increase by a factor of 1 . 5 -2 ,  too, while the component UzUr/U z inl remains practically constant .  T h e  

increase in the indicated Reynolds  stresses is due to the presence of strong shear  that is the most pronounced  in 

this zone of the tube. 

In the cross-section z /d  -- 28.5, all the pulsation components decrease,  (u'z2)t"Z/Uz inl and (@2)t"Z/Uz inl 

becoming noticeably smaller in the wall region (rw - r)/Jz* <- 1) and (u'z2)l/2/uz inl being uniform in the ent ire  
, , 2 boundary layer.  The  stress UzUz/U z int is affected ra ther  substantially by the rotation, decreasing as N increases.  

, , 2 , , 2 The  turbulent  stresses UzUg/U z inl and UrU~,/u z inl, as in the case of a fixed tube, are small in magnitude.  

The  total energy of turbulence 

, 2 

q /Uz inl 

in the cross-section z / d  = 2.7 [3 ] increases as N increases, which reflects the destabilizing effect of rotation. In 

the cross-section z /d  = 9.7, all the distributions of the turbulence energy for N--  0 - 0 . 8 3  merge into one line, since 

the stabilizing and destabiling effects are balanced. In far  cross-sections when the flow is s teady-s ta te  q2 decreases  

noticeably, which demonstrates  the predominance of the stabilizing effect. 
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The influence of injection and rotation on the parameters of turbulent flow is qualitatively similar [2, 46 ]. 

Although, in strong injection, the velocity uz can increase somewhat near the wall and uz max can decrease because 

of the considerable induced negative pressure gradient. The temperature profiles O are characterized by a 
particularly noticeable extension on the axis and displacement from the wall. 

The influences of rotation and suction are opposite, and the final result depends on the relation of these 

factors [21. As the suction intensity and N increase the velocity maximum shifts to the wall, the temperature profile 
approaches rod-shaped, and the hydraulic resistance and the number Nu increase. 

Rotation can have both a destabilizing effect and a stabilizing one on the flow of a thin water jet in a tube 
through which the air is pumped [47, 48 ]. 

With the beginning of rotation, a portion of the fluid in the form of a film is entrained by the tube wall 

and the remaining fluid changes to a "bead" along the lower generatrix of the tube. As the rotational velocity 

increases the "bead" decomposes into cells 2 - 3  calibers long. Then in the middle of the cells there form fluid rings 

to the point of the formation of a continuous annular film with toroidal vortices at regular intervals on its surface. 

For large revolutions, the disturbed character of the flow is suppressed, the film becomes transparent, and its 

surface becomes smooth. When the tube is rapidly stopped the rotational flow (that continues under its own 
momentum) becomes vortical again, and the efflux of the fluid from the open end of the channel becomes pulsating 
[47]. 

The determining role in the generation of the described toroidal vortices (the Taylor-Gi~rtler type) is 

played by the difference in the tube and film velocities. The lag of the liquid that appears with the beginning of 

the rotation becomes maximal at some moment and then disappears gradually. 

A more complex character of the change and interaction of these toroidal vortices was observed in [48 ]. 

The experimental data [47 ] for the Taylor number Ta ffi (Au,,6/vfl)q-57~w (where Au~ is the difference 

between the tangential velocity of the flow and that of the wall channel; 6 is the thickness of the fluid film) are 
described with an error of up to 18% by the dependence with the maximum 

Ta = 1.6 (Gfl/Grl max) (~ 2 exp [ -  0.4 (o92rw/g) ] 

for the flow rate of the fluid Gfl from 0 to Gfl.max = 0.13 m3/h, Ta -- 0 -32 ,  m2rw/g-- 0-20 ,  r = 0-0 .1 .  The 
film thickness was determined by the formula 

2 3 2 11/3 
t3 = [~fl/(47r rwt.Ofilm ) , 

where a)titm is the angular rotational velocity for the film. However, in [47 ], no minimum critical value of Ta is 

determined for which vortices develop. 

For the heat transfer from the fluid to the wall, the authors of [47 ] derived the extremal dependence 

Nu /Nu  0 = 1 + 1.8 (Gfl/G n max) 0"2 (mXrw/g) exp ( -  O.07o32rw/g), 

which describes,  with an error of up to 30%, the flow for d -- 0.04 m, L / d  --- 10, 0 _< r <_ 60, 

0.004 _< Gn --- 0.15 ma/h (or Ren -- 50-6500). In [48 ], it is shown that the heat transfer in a tube partially filled 
with a liquid proceeds with the same intensity as in an entirely filled one. This is attributable to the fact that during 
rotation the unfilled portion of the tube is covered with a film of the liquid (a thickness of 0.5 mm), which receives 

heat from the wall and then mixes with the remaining liquid. 

3. Other Types of Channels. In [48 ], experimental and computational data are given for an axial rotating 

tube that is closed at one end. In this channel, under the a action of the radial pressure drop generated by 

centrifugal forces, there develops combined flow with longitudinal rod suction of the air near the tube axis and 

annular peripheral back flow of the air to the atmosphere. A special feature of the laminar flow of a fluid in a 
vertical rotating tube with a rectangular profile of axial velocity uz at the inlet is the possibility of the wall return 

flows of the fluid occurring [50 ]. As a result of a theoretical analysis it was found in [50 ] that for co 2 < 5.77 the 
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profile of the axial velocity Uz at the inlet corresponds to Poiseuille flow; for 5.77 _< w 2 < 25.91, the flow of the 

fluid near the wall slows down, and the profile of the velocity Uz is deformed. When w 2 > 25.91 wall return flows 

occur at some distance from the inlet to the tube (to determine which, a rather complex expression is given in 

[501). 

Rotation that destabilizes laminar flow can lead to the occurrence of periodic pulsations of the flow velocity 

that are attenuated along the length even in a straight tube, which is most clearly observed in the experiments [51 ] 

for Reinl " 550 and I / N  ~ 0.31. The change in cross-sectional area investigated in [51 ] (the apex angle is _+ 1.87 ~ 

has a negligible effect on the stability of the developing wave process. In a divergent tube, the amplitude of 

oscillating disturbances is smaller than in a convergent tube. However, in the first case, the overall retardation of 
the flow together with decreasing pulsation lead to the occurrence of return flow and opposite rotation in the vicinity 

of the axis of the tube at its inlet. The formation and decomposition of a toroidal vortex at this site are also confirmed 
by flow visualization. 

The described mechanism as the authors of [51 ] think, can take place in the case of vortex decomposition 
in a swirling flow in a fixed divergent tube, too. 

Conclusions.The rotation of channels about their axis has a substantial effect on the character of flow in 

them and the intensity of transfer processes. In channels of a constant cross-section, the rotation disturbs and 

turbulizes the originally laminar flow. The hydraulic resistance and the Nusselt number in this case can increase 

by a factor of 3 -5 .  Conversely, the originally turbulent flow becomes laminarized while the Nusselt number and 
the coefficient of hydraulic resistance can decrease by 60-70%.  

The conditions at the inlet to the channel have a substantial effect on the character of the flow. Thus, the 
supply of a fluid with a rectangular profile of axial velocity in turbulent flow has an additional turbulizing effect 

on the flow in the initial cross-sections of the channel. 

A change in the geometry of the channel or its disposition can fundamentally alter the character of the 

flow. Return currents occur in a vertical channel while velocity pulsations, return flow near the axis, and vortex 

decomposition occur in a divergent one. 

The intensity of tube rotation is the governing factor that determines the flow structure for the flow of a 
fluid that does not fully occupy the cross-section of the channel. Analysis is given for different vortex flows that 

occur in this case as well as of the influence of injection, suction, and flow in a tube that is closed at one end. 

N O T A T I O N  

r, ~o, z, cylindrical coordinates; Ur, u~, uz, radial, circular (tangential), and axial components of the flow 

velocity; Fr, F~, Fz, components of mass forces acting in fluid; T, temperature; p, static pressure; t, time; p, v, 

coefficients of dynamic and kinetic viscosity; vt, turbulent viscosity; p, density; 2, thermal conductivity; Cp, heat 

capacity; uz av, velocity averaged over cross-section; flexp, coefficient of thermal expansion; g, free fall acceleration; 
Gr ffi gt~expATda/v 2, Grashof number; d, r w, diameter and radius of tube; o~, angular rotational velocity; uo~ ffi 

wr w, circular velocity on wall; 0 ffi ( T  - T w ) / ( T m a  x - Tw); Tmax, temperature on tube axis; Re ffi u z avd /v ,  Reynolds 

axial flow number; Re,,, = ua, d / v ,  Reynolds rotational number; Re~ -- UTrw/V; u~ = [(rrz)w/P ]t/2 dynamic velocity; 

l, mixing length; 7 ffi l /rw; L,  channel length; '~hydr, hydraulic resistance of channel; N--~ = ad / ; t ,  average Nusselt 

+ Uz/Ur, number; a ,  average heat-transfer coefficient; Pr = v / a ,  Prandtl number; a, thermal diffusivity; u z 

universal velocity; y+ = ur(rw - r ) / v ,  universal coordinate; 7-- r/rw; Uz max, velocity on channel axis; ~**, momentum 

thickness; 6, boundary layer thickness; Gn, mass flow-rate of fluid through channel; the symbols "-" signify time- 
averaged pulsation characteristics. Subscripts and superscripts: w and f, conditions on the wall and the flow core; 

0, flow in fixed tube; inl, condition at inlet to channel; fl, fluid in two-phase flows. 
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